
International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 2447
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Automation and Testing of Software Design
Pattern for e-commerce Web Application

Development using J2EE MVC Architecture
Vedavyas J, Kumarswamy Y

Abstract- The Model-View-Controller design pattern is cited as the architectural basis for many J2EE web development frameworks. Here
analysis of those changes, and proposes a separate Web-MVC pattern that more accurately describes how MVC is implemented in web
frameworks. The MVC is very useful for constructing dynamic software systems. Partitioning decisions can be changed without modifying
the application. The most important part of the design pattern is to build the reusable and well structured software. Thus it became worthy
to detect which design patterns are present in the software system. Approaching this necessitate, techniques for automated design pattern
detection have appeared in this paper. These applications using patterns help to reduce the maintenance costs and ease the creation of
the new tests. Each pattern consists of definition and details highlighting its suitability for e-commerce test automation.

Index Terms: Automation, Controller, Design Patterns-commerce, Framework, Model, Partitioning, View

——————————  ——————————

1 INTRODUCTION
VC is the design pattern for the architecture of
web applications. Many languages have
implemented the frameworks and adopted them

universally. Basics Components of MVC model.
1. Model: business logic & processing
2. View: user interface
3. Controller: navigation & input

Fig 1.Generic MVC Structure

 MVC Design patter is one of the most fundamental
architecture for web applications like J2EE, .Net, Rails and
Struts etc.
J2EE and JSP technologies are the fundamentals for struts 2
framework. This Struct2 framework consists of MVC
pattern as follows.

a. User Interface component as views
b. Application logic as Model
c. Control functions as Controller

 The view component of strut 2 framework is done by
embedding JSP tags which provides diversified
functionalities like flow control, accessing model
component and effectual HTML forms structures. The
controller component is corporeal with java classes for the
actions to be implied. Each action has a responsibility to
validate user Input and to engineer transaction processing
by invoking appropriate model operations.
 The XML configuration file or the java annotation
mechanisms are used to outline and configure the actions.
Such information is used to control the flow of web
applications by finding the outcomes of each action. Value
stack eliminates much of the tasks involved in handling
HTTP requests and provides the information for JSP to
display. It is the key factor which contains the information
between view and controller and converts when needed.
 This section describes how the MVC is being represented
in the web application frameworks. It also reflects the
evolutionary changes in the web frameworks.

The primary responsibilities of MVC-Web model are:

1. It has to maintain a database for the data
persistence

2. It has to execute the application logic that operates
on the application state called transaction
processing.

3. It has to manage interactions with external agents
such as web services known as External Interface.

4. It should handle query to provide the information
to view and controller elements in response for
queries.

M IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 2448
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

The primary responsibilities of the view component are:

1. It is used for information retrieval and display
because it displays information to the user based
on the query in the model.

2. It provides input forms and controls for the user to
interact with the application.

3. It provides interactive dynamic behavior at the
client side for the users.

The primary responsibilities for the MVC-Web Controller

are:
It receives the incoming request and routes them to

appropriate handler.
It receives the request parameters and handles the action

such as invoking appropriate model elements.
It provides the response for the request depending upon

the action invoked.

2 J2EE WEB APPLICATION: AN EXAMPLE ON
PARTITIONING

 Let us consider the web-application where a client wants o
fetch information about a company’s employees in a simple
way by executing two operations.
1. By supplying a name, and clicking on a "search" button,
search the employee directory "by name". The search returns
the set of employees that match the search criteria in a format
that displays an abbreviated employee record for each
member of the returned set.
2. By clicking on a "details?" button, get detailed information
about a specific employee. Implementation in a stand-alone,
single address-space, environment, is straightforward. From
the perspective of the MVC design pattern (see Figure 1):

 The Model consists of the records in the employee
directory. There are four Views: a "search" panel; a display of
abbreviated information about a set of employee records; a
display of detailed information about a specific employee;
and a report that no employees match the search criteria.
 There are two Controllers: one that, given a "search"
directive, drives the process of querying the Model and
returns a result set; and one that, given a "details" directive,
queries the Model to get the full set of information about the
specified employee. Implementation as a web-application in
a server environment raises the issue of partitioning which is
conceptually irrelevant to, but in practice complicates, the
MVC design pattern. Naively, as there are two Controllers,
the application can be implemented in one of four ways.

Either both Controllers execute exclusively on the client or
server, or one Controller executes on the client and the other
executes on the server. Each partitioning decision greatly
affects the way that the application is implemented. For
example, if both Controllers run on the client (the "fat-client''
approach), the entire Model must be downloaded to the
client -- which is often impractical. If both Controllers run on
the server (the "thin-client'' approach), two round trips
between client and server must be performed each time that
the client searches for an employee and then asks for more
detail about that employee.

Fig 2. MVC for Employee Record.

 In fact, for many environments, either the thin-client or the
fat-client is ideal. Instead, using a dual-MVC approach, we
partition the Controllers between the client and server.
Specifically, the "search" Controller executes on the server in
association with a Model consisting of the complete
employee directory. However, when returning relatively
small sets of employee records, the Controller also returns
the full record for each of the employees, so that they can be
maintained in the client-side Model. The dual-mvc approach
allows requests for detailed employee information to be
served by the client, thus eliminating a client/server
interaction. (This implementation is beneficial only when
application scenarios typically consist of a preliminary search
for an employee using a "partial name", followed by request
for more information after the specific employee is
determined by inspection. Remember: this is only a
motivating example!)
 Of course, what we really want is to do avoid partitioning
while implementing the application, since the correct
partitioning decision depends on factors that are not
necessarily determined until actual deployment. For

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 2449
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

example, if the employee directory is relatively small, the
"fatclient" approach with both Controllers executing on the
client makes sense and would provide better performance.

Conversely, if the application is deployed in a "internet"
environment in which users want minimal customization of
their environment, the "thin-client'' approach may be the
only solution possible. Delaying application partitioning for
as long as possible is even more attractive because
partitioning gets in the way of designing the Views and
developing the business logic needed by the Controllers.
Flexible web-application partitioning addresses these needs.
In fact, flexible web-application partitioning goes further,
allowing partitioning decisions to vary dynamically, during
application execution.

The J2EE programming model explicitly supports the MVC
design pattern, and enables programs executing in MVC
mode to execute in a single address space. When deployed,
these programs can be flexibly partitioned without changing
the source code used during smvc development. We refer to
such J2EE applications as J2EElications.

3 INTRODUCTION TO AUTOMATION AND
TESTING OF DESIGN PATTERNS

In this today’s world delivering knowledge and experience
from veteran to recruit is by design patterns which the
fundamentals are of object oriented design heuristic. These
design patterns are well designed class libraries used for
abstracting and delivering its basics. The problems faced in
the manual application of prototype and observer design
patterns are often time consuming and technical, hence an
error prone activity.
 Design pattern in automation has no proper formation
within the reach so that actor participate in pattern
implementation faces problems.
 The followers of the Alexandra feel that use of natural
language prose as the principal means of pattern
specification. As per the standards of the software
engineering the natural languages bear to have vagueness
and ambiguity.
 Algorithms are used to specify the design patterns
which are the only natural to use a programming language
by which design patterns are expressed. By using the metal
language the design patterns are treated as programs that
manipulate other programs.
 Automated testing provides various gains to the
organization like finding defects and cost effective in the
development process.

 The design and automation of tests is an art as well as
science which should be take care by the writer. Writer
should keep the common principles of software
development like simple design, tuning of design patterns
which are underuse in the test development.
 In this paper we are implementing the unit testing by
using a very simple call to methods for checking the
expected results because of the complication in the tests.
We have chosen the single test to prove its results instead of
screening multiple screens.

4 DESIGN PATTERNS
“A pattern is a named problem /solution that can be
applied in new contexts.” One of the most important
features of a pattern is that it can be reused for many times
in various fields.

4.1 Classification of Design Patterns

1) Creational Design Pattern: Abstract the instantiation
process. They help make a system independent of how its
objects are created, composed, and represented. Depends
more on composition than inheritance. The emphasis shifts
away from hard coding a fixed set of behaviors toward
defining a smaller set of fundamental behaviors that can be
composed into any number of complex ones. Abstract
Factory, Builder Pattern
2) Structural Design Pattern: Concerned with how classes
and objects are composed from larger structures. Useful
when independently developed class libraries work
together. Adapter, Composite
3) Behavioral Design Pattern: Behavior patterns are

concerned with the algorithms and the assignment of
responsibilities between objects. These patterns characterize
the complex control flow that’s difficult to follow at run-
time. You concentrate more on the way objects are
communicated. Template and Interpreter pattern Test
Automation is software used to control the execution of
tests, comparing actual vs. predicted results, setting up the
test preconditions and other controls.

4.2 Levels of Automation

1. Unit Automation
2. Integration Automation
3. User Interface Automation
4. Web Service Level

In this paper we are going to solve some of the following
issues such as

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 2450
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

1. Maintainability
2. Reusability
3. Availability of time
4. Reliability
5. Modularization

5 CASESTUDY

Scenario for searching a product and verifying that price of
product starts with $

Fig. 3. The UML Class diagram showing ProductPage an d searchBar
with ComponentTests.

SearchBar Module
public List<WebElement> searchResults(String word)
{
webdriver.findElement(By.id(“search”)).sendKeys(word);
Webdriver.findElement(By.id(“srchBtn”)).click();
List<WebElement> products =
this.webdriver.findElements(By.id("productId"));
return products;
}

ProductPage Module
public String getPrice()
{
String productPrice =
this.webdriver.findElement(By.id("price")).getText();
return productPrice;
}

Test Module
public void HomePageToProductPageTest()
{
SearchBar searchBox = new SearchBar(driver);
List<WebElement> webelements =
searchBox.searchResults("books");
webelements.get(0).click();
ProductPage productPage = new ProductPage(driver);

Assert.assertTrue(productPage.getPrice().startsWith("$"));
}

Fig. 4. The UML Class diagram showing CheckOut class.

Checkout Module
public void purchaseOrder()
{
addProduct();
goToCart();
applyPayment();
}
protected void addProduct()
{
Webdriver.get("http://www.myshopping.com/"+productId+
"/product.html");
}
protected void goToCart()
{
Webdriver.get("http://wwww.myshopping.com/cart.html");
}
abstract protected void applyPayment();

ApplyPayment Module
@Override
public void applyPayment()
{
Webdriver.findElement(By.id("visa")).click();
webdriver.findElement(By.id("cardno")).sendKeys("111122223
3334444");
webdriver.findElement(By.id("expmon")).sendKeys("10");
webdriver.findElement(By.id("expyr")).sendKeys("2014");
webdriver.findElement(By.id("submit")).click();
}

@Override
public void applyPayment()
{
webdriver.findElement(By.id("discover")).click();
webdriver.findElement(By.id("cardno")).sendKeys("444433332
2221111");
webdriver.findElement(By.id("expmon")).sendKeys("10");
webdriver.findElement(By.id("expyr")).sendKeys("2014");
webdriver.findElement(By.id("submit")).click();
}

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 2451
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Test Module
@Test
public void checkout1()
{
WebDriver driver = new FirefoxDriver();
driver.get("http://www.myshopping.com");
CheckOut checkout = new Visa(driver);
checkout.setProductId(123);
checkout.purchaseOrder();
}
@Test
public void checkout2(){
WebDriver driver = new FirefoxDriver();
driver.get("http://www.myshopping.com");
CheckOut checkout = new Discover(driver);
checkout.setProductId(123);
checkout.purchaseOrder();
}

The above said common issues are been addressed with
solutions

1. Maintainability – Functionality is defined in each

component
2. Reusability – Tests call the component
3. Time – Common functionality defined in the components.
4. Reliability – All Tests calling the same component will fail.
5. Modularization – Functionality of each component is

defined.

1. 6 CONCLUSION AND FUTURE WORK
This paper describes how the partition-independent Model
View Controller design pattern can be used in the intrinsically
locution-dependent environment of partitioned Web-
applications. By understanding the scenario flows, the
application can be partitioned in a way that improves
performance. In contrast, traditional implementation
techniques require that such analysis be performed only in the
design and requirements phase because it is much too costly to
repartition the application once it is deployed. Unfortunately,
the necessary insights can often be made only after the
application has been deployed and in production for some
time. In future repartitioning, under fwap, imposes no extra
cost; an application can therefore be readily tuned after
deployment based on feedback from actual client use. We are
currently implementing the algorithms and infrastructure
needed to enable fwaplications to scale over non-trivial
application Models. We are also working with a customer to
validate the fwap concepts and implementation. In this
paper we presented the narration approach to design pattern
automation. The main characteristic of this paper is to simplify
and to make intuitively appealing.
 Applications are invariable acquiring poses severe
sustenance problems for the automated testers. Maintenance

problems are dealt by using design patterns and thus dealing
test code with the same grandness as application code. This
paper presents a class of design patterns that evidence how to
alleviate test code reuse, adaptability, changes and
maintenance without duplication for surviving tests.

REFERENCES
[1] Shuster, J., UIML: AnAppliance-Independent XML User Interface

Language, Proceedings of the Eight International World
Wide Web Conference, May, 1999,617-630.

[2] Barracuda: Open Source Presentation Framework, http://
barracuda.enhydra.org/, 2001.

[3] Beck, K., Extreme Programming Explained: Embrace
Change (XP Series), Addison-Wesley Pub Co., 1999.

[4] Bennett, B. et al, A distributed object oriented framework to
offer transactional support for long running business processes,
IFIPIACM Intemational Conference on Distributed Systems
Platforms and Open Distributed Processing (Middleware 2000).

[5] Bergsten, Hans, JavaServer Pages, O'Reilly, 2000.
Betz, K., Leff, A., Rayfield, J., Developing Highly-Responsive

[6] User Inte$aces with DHTML and Servlets", Proceedings of
the 19th IEEE International Performance, Computing, and
Communications Conference -- IPCCC-2000, 2000.

[7] Buschmann, F. et al, Pattern-Oriented Software Architecture:
A System of Patterns, John Wiley and Sons, 1996, 123- 168.

[8] Coutaz, J., PAC, An Object-Oriented Model for Dialog
Design, Elsevier Science Publishers, Proceedings of Human-Computer
Interaction - INTERACT, 1987,43 1-436.

[9] Enterprise JavaBeans Specipcations, http://java.sun.com/
products/ejb/docs.html, 2001.

[10] JAVA PLUG-IN 1.2 SOFTWARE FAQ, http://java.sun.com/
products/plugin/l.2/plugin.faq.html , 2001.

[11] Flanagan, David, JavaScript: The Definitive Guide, 3rd,
O'Reilly, 1998.

[12] Gray, G and Reuter, A. Transaction Processing: Concepts
and Techniques, Morgan Kaufmann, 1993.

[13] JAVA SERVLET TECHNOLOGY IMPLEMENTATIONS &
SPECIFICATIONS, http://java.sun.com/products/servlet/download.
html#specs , 2001.

[14] Java 2 Platform, Micro Edition (JZME), http://
java.sun.com/j2me/, 2001.

[15] G.E. Krasner and S.T. Pope, A Cookbook for Using the
Model-View-Controller User-Interface Paradigm in Smalltalk-
80, SICS Publication, 26-49, Journal of Object-Oriented Programming,
August/September, 1988.

[16] Struts, http://jakarta.apache.org/struts/index.html2, 001.
[17] WebW ork, http://sourceforge.net/projects/webwor2k,0 01.
[18] Alexander, Christopher, Sara Ishikawa, Murray, Silverstein Max

Jacobson,
[19] Ingrid Fixdahl-King, and Shlomo Angel (1977). “A Pattern Language”.

Oxford University Press, New York.
[20] Eden, Amnon H, Joseph (Yossi) Gil, and Amiram Yehudai (1996) . “A

Formal Language forDesign Patterns (extended abstract). A technical
report, The Department of Computer Science, School of Mathematics, Tel

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 2452
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Aviv University.
[21] Gamma Erich, Richard Helm, Ralph Johnson, and John Vlissides (1995).

Design Patterns:Elements of Reusable Object Oriented Software.
Addison-Wesley.

[22] Pal, Partha P. and Naftali Minski (1996). Imposing the Law of Demeter
and Its variations.TOOLS USA 1996.

[23] Crispin, Lisa, Tip House Testing Extreme Programming. Addison-
Wesley, 2002

--

• Vedavyas J, Asst. Prof. Department of MCA, BITM, Bellary, VTU
• Kumarswamy Y, Prof. and HOD. Department of MCA,

Dayanandasagar College of Engineering, Bangalore, VTU
vedavyasjamakhandi@gmail.com
yskldswamy@yahoo.co.in

IJSER

http://www.ijser.org/

	1 INTRODUCTION
	2 J2EE WEB APPLICATION: AN EXAMPLE ON PARTITIONING
	3 INTRODUCTION TO AUTOMATION AND TESTING OF DESIGN PATTERNS
	4 DESIGN PATTERNS
	4.1 Classification of Design Patterns
	4.2 Levels of Automation

	5 CASESTUDY
	1. 6 Conclusion and Future Work
	REFERENCES

